ProductPromotion
Logo

Go.Lang

made by https://0x3d.site

GitHub - james-bowman/sparse: Sparse matrix formats for linear algebra supporting scientific and machine learning applications
Sparse matrix formats for linear algebra supporting scientific and machine learning applications - james-bowman/sparse
Visit Site

GitHub - james-bowman/sparse: Sparse matrix formats for linear algebra supporting scientific and machine learning applications

GitHub - james-bowman/sparse: Sparse matrix formats for linear algebra supporting scientific and machine learning applications

Sparse matrix formats

License: MIT GoDoc Build Status Go Report Card codecov Mentioned in Awesome Go Sourcegraph

Implementations of selected sparse matrix formats for linear algebra supporting scientific and machine learning applications. Compatible with the APIs in the Gonum package and interoperable with Gonum dense matrix types.

Overview

Machine learning applications typically model entities as vectors of numerical features so that they may be compared and analysed quantitively. Typically the majority of the elements in these vectors are zeros. In the case of text mining applications, each document within a corpus is represented as a vector and its features represent the vocabulary of unique words. A corpus of several thousand documents might utilise a vocabulary of hundreds of thousands (or perhaps even millions) of unique words but each document will typically only contain a couple of hundred unique words. This means the number of non-zero values in the matrix might only be around 1%.

Sparse matrix formats capitalise on this premise by only storing the non-zero values thereby reducing both storage/memory requirements and processing effort for manipulating the data.

Features

Usage

The sparse matrices in this package implement the Gonum Matrix interface and so are fully interoperable and mutually compatible with the Gonum APIs and dense matrix types.

// Construct a new 3x2 DOK (Dictionary Of Keys) matrix
dokMatrix := sparse.NewDOK(3, 2)

// Populate it with some non-zero values
dokMatrix.Set(0, 0, 5)
dokMatrix.Set(2, 1, 7)

// Demonstrate accessing values (could use Gonum's mat.Formatted()
// function to pretty print but this demonstrates element access)
m, n := dokMatrix.Dims()
for i := 0; i < m; i++ {
    for j := 0; j < n; j++ {
        fmt.Printf("%.0f,", dokMatrix.At(i, j))
    }
    fmt.Printf("\n")
}

// Convert DOK matrix to CSR (Compressed Sparse Row) matrix
// just for fun (not required for upcoming multiplication operation)
csrMatrix := dokMatrix.ToCSR()

// Create a random 2x3 COO (COOrdinate) matrix with
// density of 0.5 (half the elements will be non-zero)
cooMatrix := sparse.Random(sparse.COOFormat, 2, 3, 0.5)

// Convert CSR matrix to Gonum mat.Dense matrix just for fun
// (not required for upcoming multiplication operation)
// then transpose so it is the right shape/dimensions for
// multiplication with the original CSR matrix
denseMatrix := csrMatrix.ToDense().T()

// Multiply the 2 matrices together and store the result in the
// sparse receiver (multiplication with sparse product)
var csrProduct sparse.CSR
csrProduct.Mul(csrMatrix, cooMatrix)

// As an alternative, use the sparse BLAS routines for efficient
// sparse matrix multiplication with a Gonum mat.Dense product
// (multiplication with dense product)
denseProduct := sparse.MulMatMat(false, 1, csrMatrix, denseMatrix, nil)

Installation

With Go installed, package installation is performed using go get.

go get -u github.com/james-bowman/sparse/...

Acknowledgements

See Also

License

MIT

Articles
to learn more about the golang concepts.

Resources
which are currently available to browse on.

mail [email protected] to add your project or resources here ๐Ÿ”ฅ.

FAQ's
to know more about the topic.

mail [email protected] to add your project or resources here ๐Ÿ”ฅ.

Queries
or most google FAQ's about GoLang.

mail [email protected] to add more queries here ๐Ÿ”.

More Sites
to check out once you're finished browsing here.

0x3d
https://www.0x3d.site/
0x3d is designed for aggregating information.
NodeJS
https://nodejs.0x3d.site/
NodeJS Online Directory
Cross Platform
https://cross-platform.0x3d.site/
Cross Platform Online Directory
Open Source
https://open-source.0x3d.site/
Open Source Online Directory
Analytics
https://analytics.0x3d.site/
Analytics Online Directory
JavaScript
https://javascript.0x3d.site/
JavaScript Online Directory
GoLang
https://golang.0x3d.site/
GoLang Online Directory
Python
https://python.0x3d.site/
Python Online Directory
Swift
https://swift.0x3d.site/
Swift Online Directory
Rust
https://rust.0x3d.site/
Rust Online Directory
Scala
https://scala.0x3d.site/
Scala Online Directory
Ruby
https://ruby.0x3d.site/
Ruby Online Directory
Clojure
https://clojure.0x3d.site/
Clojure Online Directory
Elixir
https://elixir.0x3d.site/
Elixir Online Directory
Elm
https://elm.0x3d.site/
Elm Online Directory
Lua
https://lua.0x3d.site/
Lua Online Directory
C Programming
https://c-programming.0x3d.site/
C Programming Online Directory
C++ Programming
https://cpp-programming.0x3d.site/
C++ Programming Online Directory
R Programming
https://r-programming.0x3d.site/
R Programming Online Directory
Perl
https://perl.0x3d.site/
Perl Online Directory
Java
https://java.0x3d.site/
Java Online Directory
Kotlin
https://kotlin.0x3d.site/
Kotlin Online Directory
PHP
https://php.0x3d.site/
PHP Online Directory
React JS
https://react.0x3d.site/
React JS Online Directory
Angular
https://angular.0x3d.site/
Angular JS Online Directory